Nonlinear encoding of tactile patterns in the barrel cortex.
نویسندگان
چکیده
Cells in the rodent barrel cortex respond to vibrissa deflection with a brief excitatory component and a longer suppressive component. The response to a given deflection is thus scaled because of suppression induced by a preceding deflection, causing the neuronal response to be linked to the temporal properties of the peripheral stimulus. A paired-deflection stimulus was used to characterize the postexcitatory suppression and a 3-deflection stimulus was used to investigate the nonlinear response to patterns of whisker deflections in barbiturate-anesthetized Sprague-Dawley rats. The postexcitatory suppression was not dependent on a sensory-evoked action potential to the first deflection, implying that it is likely a subthreshold property of the network. The suppression induced by a deflection served to suppress both the excitatory and suppressive components of a subsequent neuronal response, thus effectively disinhibiting it. Two different response properties were observed in the recorded cells. Approximately 65% responded to a vibrissa deflection with an excitatory component followed by a suppressive component and 35% responded with excitation, suppression, and a subsequent rebound in excitation. Based on these observations of postexcitatory dynamics, a prediction method was used to estimate neuronal responses to more complex stimulus trains. Using the 2nd-order representation obtained from the paired-deflection stimulus, responses to general periodic deflection patterns were well predicted. A higher cutoff frequency was predicted for rebound cells compared with cells not exhibiting rebound excitation, consistent with experimental observations. The method also predicted the response of neurons to a random aperiodic deflection pattern. Therefore the temporal structure of cortical dynamics after a single deflection dictates the response to complex temporal patterns, which are more representative of stimuli encountered under natural conditions.
منابع مشابه
Representation of tactile scenes in the rodent barrel cortex.
After half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that tak...
متن کاملEmergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons
Rats discriminate objects by scanning their surface with the facial vibrissae, producing spatiotemporally complex sequences of tactile contacts. The way in which the somatosensory cortex responds to these complex multivibrissal stimuli has not been explored. It is unclear yet whether contextual information from across the entire whisker pad influences cortical responses. Here, we delivered tact...
متن کاملThe effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex
In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...
متن کاملThe effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex
In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...
متن کاملRequirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex.
The mammalian sensory neocortex exhibits experience-dependent plasticity such that neurons modify their response properties according to changes in sensory experience. The synaptic plasticity mechanism of long-term potentiation requiring calcium-calmodulin-dependent kinase type II (CaMKII) could underlie experience-dependent plasticity. Plasticity in adult mice can be induced by changes in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 5 شماره
صفحات -
تاریخ انتشار 2004